The neutrino physics program of the GADMC: the DarkNoon concept for 0vββ search

Claudio Savarese

Princeton University

Rare Processes and Precision Frontier Townhall Meeting - Snowmass2021

Oct 2nd 2020

DarkNoon detector concept

- Inner detector: dual-phase TPC
- Proto-DUNE membrane cryostat
- AAr in veto, UAr+Xe mixture in TPC

Inner detector:

- Fiducial mass: 50t of ¹³⁶Xe
- LXe 20% molar fraction in LAr (10.1016/j.fluid.2014.07.020), equivalent to ~41% mass fraction.
- Xe enriched to 90% in ¹³⁶Xe
- LArXe mixture kept cold near LAr boiling temperature:
 - Slower radon emanation
 - Suppression of SiPMs DCR
- 4π light detection coverage with 0.1ns timing resolution.
- Assumed energy resolution: 0.7% at the ROI due to 4π high PDE SiPM coverage (EXO-200: 1.15±0.02%, nEXO: 1%)

Expected backgrounds

- Expected background rate in the ROI lower than 5E-4 events/tonne/yr/keV, dominated by:
 - ⁸B v-e scattering:
 - Xe: 1.8E-4 events/tonne/yr/keV
 - Ar: 2.0E-4 events/tonne/yr/keV
 - 2νββ decay (1.37e-3 events/tonne_{iso}/yr in the ROI).
- Radiogenic backgrounds from detector components effectively suppressed by position-based cuts.
- Radon sub-dominant thanks to low temperature of the Ar-Xe mixture and Bi-Po tagging.
- Argon-42 cosmogenic activation (above ground) still to be measured and taken into account.
- A Cherenkov light based cut further reduces surviving single-ionization-track events (not shown in the bkg plot).

Expected backgrounds

- Expected background rate in the ROI lower than 5E-4 events/tonne/yr/keV, dominated by:
 - ⁸B v-e scattering:
 - Xe: 1.8E-4 events/tonne/yr/keV
 - Ar: 2.0E-4 events/tonne/yr/keV
 - 2vββ decay (1.37e-3 events/tonne_{iso}/yr in the ROI).
- Radiogenic backgrounds from detector components effectively suppressed by position-based cuts.
- Radon sub-dominant thanks to low temperature of the Ar-Xe mixture and Bi-Po tagging.
- Argon-42 cosmogenic activation still to be measured and taken into account.
- A Cherenkov light based cut further reduces surviving single-ionization-track events (not shown in the bkg plot).

Simulation of Cherenkov light emission for a DBD decay (left) and for an electron scattering event (right)

Physics reach

- Projections with 1000 t·y exposure (20y)
- Sensitivity up to $T_{1/2} \sim 10^{30}$ years
- Exclusion limits for the effective Majorana mass down to ~1meV (model dependent).

Novel technologies

Idea Motivation R&D

 Target: 20% molar fraction mixture of LXe in LAr. Xe enriched to 90% in ¹³⁶Xe Mixture temperature near LAr boiling point:

- Abatement of Radon emanation/de-gassing.
- SiPM dark count rate abatement.

- Develop a cryogenic system that ensures long-term mixture stability.
- Cryogenic distillation technique developed for DS-20k to enrich Xe

- Cherenkov light as a mean of background rejection.
- Event classification (1 vs 2 ionization tracks) at a given energy via detection of Cherenkov light from ionizing particles.
 - intensity proportional to track length.
 - photons' directionality allows reconstruction of event topology
- Develop a solid event classification algorithm based on Cherenkov light.

 Detection technology: high efficiency, sub-nanosecond time resolution Silicon Photo Multipliers (SiPMs) SiPMs' performances

- High photon detection efficiency results in a higher energy resolution
- Sub-nanosecond time resolution needed for Cherenkov photons identification
- Extreme radio-purity

- Develop cleaner cryogenic preamplification and read-out electronics.
- Improve single photon time resolution.

Themes of broader interest

- LArXe mixture stability
- Xe enrichment through cryogenic distillation on multi-tonne scale
- Argon-42 activity in UAr and activation rate during shipping
- SiPMs development to meet timing and radiopurity requirements
- Cherenkov light cut optimization

Snowmass-2021

- **Physics motivation:** design a DBD experiment with stronger physics reach, up to the normal ordering scale.
- **Timeline:** we're planning on having a dedicated publication for the DarkNoon concept on a timescale of several months. We will also prepare a white paper summarizing DarkNoon physics reach and the other neutrino physics results achievable with the GADMC detectors (supernova physics and solar spectroscopy).
- **Joint efforts:** several R&Ds might be of interest for other experimental groups. These developments are mostly incremental optimizations of already existing solutions and it's reasonable to assume that they could be finalized on a relatively short time scale.
- Snowmass outcome: broader community involvement in the R&D and design of next generation DBD detectors.